Andrey Koval
October 14, 2014
The Laboratory for Integrative Lifespan Research
Department of Psychology
University of Victoria
Academic Paper:
Dynamic Reporting
see ialsa.github.io/tutorials for knowledge base
Ultimate : Answering a research question
Practical : Publishing a paper, producing a manuscript
Technical : Producing a dynamic document
In the process of achieving these goals we encounter the need to perform particular tasks on a computer:
A. Load and inspect datasets
B. Depict data in statistical graphics
C. Fit statistical models
D. Compare observed and modeled data
E. Produce reports discussing the steps above
let's demonstrate how we can accomplish each of these tasks on a R simulator
ds <- mtcars
str(ds, 10)
'data.frame': 32 obs. of 11 variables:
$ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
$ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
$ disp: num 160 160 108 258 360 ...
$ hp : num 110 110 93 110 175 105 245 62 95 123 ...
$ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
$ wt : num 2.62 2.88 2.32 3.21 3.44 ...
$ qsec: num 16.5 17 18.6 19.4 17 ...
$ vs : num 0 0 1 1 0 1 0 1 1 1 ...
$ am : num 1 1 1 0 0 0 0 0 0 0 ...
$ gear: num 4 4 4 3 3 3 3 4 4 4 ...
$ carb: num 4 4 1 1 2 1 4 2 2 4 ...
require(ggplot2)
p <- ggplot(mtcars, aes(x=wt, y=mpg))
p <- p + geom_point()
p
lm(mpg ~ wt, mtcars)
Call:
lm(formula = mpg ~ wt, data = mtcars)
Coefficients:
(Intercept) wt
37.29 -5.34
require(ggplot2)
ds <- mtcars
ds$mpg_modeled <- predict(lm(mpg ~ wt, mtcars))
p <- ggplot(ds, aes(x=wt, y=mpg))
# p <- p + geom_point()
p <- p + geom_point(aes(y=mpg_modeled),color="red")
p
require(ggplot2)
ds <- mtcars
ds$mpg_modeled <- predict(lm(mpg ~ wt, mtcars))
p <- ggplot(ds, aes(x=wt, y=mpg))
p <- p + geom_point()
p <- p + geom_line(aes(y=mpg_modeled),color="red")
p
We just did it!
Traditional vs Reproducible
Toolbox
Skillset
Questions?
Comments?